
Generative AI has lowered the barriers to
computational social sciences

Yongjun Zhang1

1 Department of Sociology and Institute for Advanced Computational Science, Stony
Brook University, Stony Brook, New York, United States

YVersion 1, Updated on Nov 9, 2023
* yongjun.zhang@stonybrook.edu

Abstract

Generative artificial intelligence (AI) has revolutionized the field of computational social
science, unleashing new possibilities for analyzing multimodal data, especially for scholars
who may not have extensive programming expertise. This breakthrough carries profound
implications for the realm of social sciences. Firstly, generative AI can significantly enhance
the productivity of social scientists by automating the generation, annotation, and debugging
of code. Secondly, it empowers researchers to delve into sophisticated data analysis through
the innovative use of prompt engineering. Lastly, the educational sphere of computational
social science stands to benefit immensely from these tools, given their exceptional ability to
annotate and elucidate complex codes for learners, thereby simplifying the learning process
and making the technology more accessible.

Introduction 1

The swift advancement of generative AI, particularly with OpenAI’s groundbreaking re- 2

lease of GPT-4 turbocharged models, has significantly streamlined the computational social 3

science (CSS) landscape. Traditionally, CSS scholars grappled with the intricate task of 4

distilling valuable insights from diverse and multimodal data sources — text, imagery, au- 5

dio, and video. The pre-generative AI era demanded from them a mastery of programming 6

to adeptly fine-tune pre-trained large language or computer vision models using transfer 7

learning for sophisticated downstream tasks like sentiment analysis and image classification. 8

Now, the vanguard of OpenAI’s suite — GPT-4V, Whisper V3, and advanced Text-to- 9

Speech (TTS) technologies — empowers scholars to seamlessly convert varied inputs into 10

coherent text outputs. Even more transformative is the capacity for nuanced prompt engi- 11

neering, enabling a code interpreter that simplifies the generation, annotation, and debugging 12

of code, thereby making complex computational tasks more accessible. 13

Within the scope of this commentary, I strive to illuminate how generative AI tools 14

are dismantling the traditional barriers faced by digital humanities and CSS practitioners, 15

particularly those with limited coding proficiency. Following this introduction, Section 2 16

1

will elucidate the process by which scholars can harness generative AI for coding purposes 17

— generating, annotating, and debugging with unprecedented ease. Subsequently, Section 18

3 will delve into the direct analysis of multimodal data using GPT-4 models, exploring the 19

burgeoning implications this holds for AI’s trajectory within social science research. 20

Coding is no longer a big challenge to computational 21

social scientists 22

A significant hurdle for social scientists delving into computational research has been the 23

necessity to craft sophisticated code capable of managing complex operations, such as dis- 24

tilling pivotal information from textual and visual data. In the era preceding the advent 25

of generative AI, academics would typically fine-tune pre-trained large language and vision 26

models — like BERT, ResNet, and Swin Transformer — to perform nuanced text and image 27

classification tasks. For example, Y. Zhang, Lin, Wang, and Fan (2023) adeptly honed the 28

Robustly Optimized Bidirectional Encoder Representations from Transformers (RoBERTa) 29

model to analyze the sentiments and topics of 25 million tweets, uncovering prevalent sino- 30

phobia within the Chinese language discourse amid the initial stages of the pandemic. Sim- 31

ilarly, H. Zhang and Pan (2019) meticulously calibrated a substantial convolutional neural 32

network, previously trained on ImageNet, combined with a recurrent neural network to cat- 33

egorize images and texts from Weibo, thereby compiling a database chronicling collective 34

action in China. Such deep learning endeavors traditionally require fluency in frameworks 35

like PyTorch or TensorFlow, posing a formidable barrier to novices at the confluence of social 36

movements and computational social sciences. 37

Generating Codes 38

A pivotal advancement in the realm of generative AI has been its capacity to craft functional 39

code for end-users. Tools such as GitHub Copilot, Code LLaMa, and the ChatGPT code 40

interpreter have become staples for scholars and engineers, facilitating daily code generation. 41

This proves especially advantageous for social scientists whose expertise in programming may 42

be nascent. I will demonstrate this through OpenAI’s ChatGPT (GPT-4), highlighting its 43

code interpreter’s ability to generate scripts that fine-tune a Swin Transformer model for 44

image classification in the context of protests. 45

To illustrate, consider my project where I amassed a dataset of approximately 1.6 million 46

images from around the globe, potentially depicting social protests. These images reside on 47

my network-attached storage, organized within a directory named images by country, fur- 48

ther segmented into subdirectories labeled by country codes. Additionally, I have leveraged 49

the UCLA protest image dataset, which comprises 40,764 images — 11,659 of which are 50

protest-related — each tagged with various visual attributes and sentiments (Won, Steinert- 51

Threlkeld, & Joo, 2017). It’s noteworthy that while the images in the training dataset are 52

sorted into ’train’ and ’test’ folders, the corresponding labels are housed in distinct ’train- 53

annotation’ and ’test-annotation’ TSV files. These files contain ’fname’ and ’protest’ labels, 54

where ’fname’ matches the image filenames in the train and test directories. The core objec- 55

tives are two-fold: firstly, to script Python code that loads the UCLA protest image dataset 56

2

to refine a pre-trained Swin Transformer v2 model for protest image identification, and sec- 57

ondly, to apply the refined model to classify the 1.6 million image dataset. The ensuing 58

sections will narrate the iterative prompting process undertaken to fulfill these tasks. 59

60

Prompt: Write pytorch code to fine tune a swin transformer model v2. 61

Training images are stored in train and test folders while labels 62

are stored in two seperate tsv files train_annot.txt and test_annot.txt. 63

Note that these txt files contain variables like fname and protest. 64

fname is file names corresponding to images in train and test folders. 65

You need to write python code to load image and label data and then finetune, 66

evaluate, and save swin transformer model. Finally, you need to use the 67

saved model to infer images stored in images_by_country 68

with subfolders named by countries. Make sure you write python codes 69

to check whether these iamges files are valid. 70

ChatGPT: Below is a Python code to fine-tune a Swin Transformer model 71

using PyTorch. This code assumes you have the necessary environment 72

and the Swin Transformer pre-trained model installed. 73

74

The steps are as follows: 75

76

Read the annotation files and prepare the datasets. 77

Define a custom dataset class to load images and labels. 78

Define the model, loss function, and optimizer. 79

Train the model. 80

Evaluate the model on the test dataset. 81

Save the fine-tuned model. 82

Infer on new images from images_by_country and check for valid image files. 83

First, make sure you have installed the required libraries: 84

85

pip install torch torchvision timm pandas pillow 86

87

Here’s the complete Python code: 88

89

import os 90

import pandas as pd 91

from PIL import Image 92

from torchvision import transforms 93

from torch.utils.data import Dataset, DataLoader 94

from torch import nn, optim 95

import torch 96

import timm 97

from torchvision.io import read_image 98

from torchvision.transforms.functional import to_pil_image 99

from torchvision.utils import save_image 100

101

1. Prepare the datasets 102

train_annot = pd.read_csv(’train_annot.txt’, sep=’\t’) 103

test_annot = pd.read_csv(’test_annot.txt’, sep=’\t’) 104

105

2. Define a custom dataset class 106

class ProtestDataset(Dataset): 107

def __init__(self, annotations_file, img_dir, transform=None): 108

self.img_labels = pd.read_csv(annotations_file, sep=’\t’) 109

self.img_dir = img_dir 110

self.transform = transform 111

112

def __len__(self): 113

return len(self.img_labels) 114

115

def __getitem__(self, idx): 116

img_path = os.path.join(self.img_dir, self.img_labels.iloc[idx, 0]) 117

image = Image.open(img_path).convert(’RGB’) 118

label = self.img_labels.iloc[idx, 1] 119

3

if self.transform: 120

image = self.transform(image) 121

return image, label 122

123

Define the transform 124

transform = transforms.Compose([125

transforms.Resize((224, 224)), 126

transforms.ToTensor(), 127

transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), 128

]) 129

130

Create the datasets 131

train_dataset = ProtestDataset(’train_annot.txt’, ’train’, transform=transform) 132

test_dataset = ProtestDataset(’test_annot.txt’, ’test’, transform=transform) 133

134

3. Define the model, loss function, and optimizer 135

device = torch.device(’cuda’ if torch.cuda.is_available() else ’cpu’) 136

137

model = timm.create_model(’swin_v2’, pretrained=True) 138

model.head = nn.Linear(model.head.in_features, 1) # Adjust for binary classification 139

140

model = model.to(device) 141

criterion = nn.BCEWithLogitsLoss() 142

optimizer = optim.Adam(model.parameters(), lr=0.001) 143

144

4. Train the model 145

def train(dataloader, model, loss_fn, optimizer): 146

size = len(dataloader.dataset) 147

for batch, (X, y) in enumerate(dataloader): 148

X, y = X.to(device), y.to(device) 149

150

Compute prediction error 151

pred = model(X) 152

loss = loss_fn(pred, y.unsqueeze(1).float()) 153

154

Backpropagation 155

optimizer.zero_grad() 156

loss.backward() 157

optimizer.step() 158

159

if batch % 100 == 0: 160

loss, current = loss.item(), batch * len(X) 161

print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]") 162

163

5. Evaluate the model 164

def test(dataloader, model, loss_fn): 165

size = len(dataloader.dataset) 166

model.eval() 167

test_loss, correct = 0, 0 168

with torch.no_grad(): 169

for X, y in dataloader: 170

X, y = X.to(device), y.to(device) 171

pred = model(X) 172

test_loss += loss_fn(pred, y.unsqueeze(1).float()).item() 173

correct += (pred.sigmoid().round() == y).type(torch.float).sum().item() 174

test_loss /= size 175

correct /= size 176

print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n") 177

178

Dataloaders 179

train_dataloader = DataLoader(train_dataset, batch_size=64, shuffle=True) 180

test_dataloader = DataLoader(test_dataset, batch_size=64, shuffle=False) 181

182

Training loop 183

epochs = 10 184

for t in range(epochs): 185

print(f"Epoch {t+1}\n-------------------------------") 186

train(train_dataloader, model, criterion, optimizer) 187

4

test(test_dataloader, model, criterion) 188

print("Done!") 189

190

6. Save the model 191

torch.save(model.state_dict(), ’swin_transformer_finetuned.pth’) 192

193

7. Infer on new images and check for valid image files 194

def is_valid_image(file_path): 195

try: 196

with Image.open(file_path) as img: 197

img.verify() # verify that it is, in fact, an image 198

return True 199

except (IOError, SyntaxError) as e: 200

print(’Bad file:’, file_path) 201

return False 202

203

model.eval() 204

countries_dir = ’images_by_country’ 205

countries = [d for d in os.listdir(countries_dir) if os.path.isdir(os.path.join(countries_dir, d))] 206

207

for country in countries: 208

country_dir = os.path.join(countries_dir, country) 209

for image_file in os.listdir(country_dir): 210

image_path = os.path.join(country_dir, image_file) 211

if not is_valid_image(image_path): 212

continue 213

image = Image.open(image_path).convert(’RGB’) 214

image = transform(image).unsqueeze(0).to(device) 215

with torch.no_grad(): 216

prediction = model(image).sigmoid().item() 217

print(f"Image {image_file} in {country} predicted as 218

{’Protest’ if prediction > 0.5 else ’Non-Protest’} with confidence {prediction}") 219

220

221

Annotating Codes 222

The initial foray into code generation with AI tools may yield code snippets that are complex 223

or not immediately operational, especially for those just embarking on their coding journey. 224

Understanding the intricacies of the functions and the specifics of parameter setting can be 225

daunting. To bridge this gap, one can enlist the help of a code interpreter to meticulously 226

dissect and elucidate the code line by line. This guided exploration facilitates a deeper com- 227

prehension of the technical nuances. Here’s an example of how one might engage ChatGPT 228

to perform such detailed code annotations: 229

”I’ve received this block of code from the initial output, but as someone new to pro- 230

gramming, I’m struggling to grasp its structure and logic. Could you walk me through this 231

code, providing annotations for each segment and explaining the purpose of the different 232

parameters? This way, I can better understand what each part of the code is intended to do 233

and how I might adjust it to fit my specific needs.” 234

By posing the request in this manner, you are likely to receive a breakdown that not only 235

sheds light on the code’s current functionality but also imparts knowledge that can empower 236

you to modify and adapt the code independently in the future. 237

Prompt: I don’t understand the train function in the above generated code. 238

Please annotate the code line by line and explain it to me in detail. 239

Make sure you explain the parameters in those functions. 240

241

5

Certainly! Here is a detailed annotation of the train function, 242

breaking down each line and explaining what it does: 243

244

def train(dataloader, model, loss_fn, optimizer): 245

""" 246

The train function is responsible for one epoch of training the model. 247

248

Parameters: 249

- dataloader: An instance of DataLoader which provides batches of the dataset. 250

- model: The neural network model that is being trained. 251

- loss_fn: The loss function that is used to evaluate the performance of the model. 252

- optimizer: The optimization algorithm used to update the weights of the model. 253

""" 254

255

Size of the dataset being used for training. 256

size = len(dataloader.dataset) 257

Set the model into training mode which enables the training specific operations like dropout. 258

model.train() 259

260

Loop through each batch in the DataLoader. 261

for batch, (X, y) in enumerate(dataloader): 262

X holds the batch of images, y holds the corresponding labels. 263

264

Move the input and target batches to the same device as the model (GPU or CPU). 265

X, y = X.to(device), y.to(device) 266

267

Perform a forward pass: compute the predicted outputs by passing inputs to the model. 268

pred = model(X) 269

270

Compute the loss by comparing the predictions to the actual labels. 271

The unsqueeze operation is used to add a dimension to y so it matches the shape of pred. 272

loss = loss_fn(pred, y.unsqueeze(1).type_as(pred)) 273

274

Before the backward pass, use the optimizer to zero out any gradients from the previous step 275

to prevent accumulation from previous forward passes. 276

optimizer.zero_grad() 277

278

Perform a backward pass: compute the gradient of the loss with respect to model parameters. 279

loss.backward() 280

281

After calculating the gradients, we update the parameters with the optimizer step. 282

optimizer.step() 283

284

Print out the loss every 100 batches to check the training progress. 285

This is not strictly necessary but helpful to know that something is happening. 286

if batch % 100 == 0: 287

loss, current = loss.item(), batch * len(X) 288

print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]") 289

290

The function train takes four parameters: 291

292

dataloader: This parameter should be a DataLoader object that provides batches 293

of data in the form of (input_data, labels). It abstracts the complexity of iterating 294

over the dataset, and automatically handles the generation of minibatches and 295

shuffling of the data if specified. 296

297

model: The neural network model that you are training. This should be an instance 298

of a PyTorch neural network model which inherits from nn.Module. 299

300

loss_fn: A loss function that takes the model’s predictions and the true labels 301

and calculates a numerical value representing how well the model is performing. 302

In PyTorch, this is typically an instance of a class that inherits from nn.modules.loss._Loss. 303

304

optimizer: This is an instance of an optimizer class from torch.optim. 305

It is responsible for updating the model parameters with the gradients 306

computed during backpropagation. 307

308

In the function body, model.train() is called to put the model in training mode. 309

6

This is important because some types of layers, like dropout and batch normalization, 310

behave differently during training than during inference. 311

312

During the loop, the model makes predictions on the input batch X and then the 313

loss is calculated by comparing these predictions to the true labels y. After that, 314

the gradients are computed by loss.backward(), and the optimizer updates the model’s 315

parameters with optimizer.step(). Finally, some logging is performed to track the progress. 316

317

Note: The .type_as(pred) function is used to make sure that y is of the same data 318

type as pred, which is necessary for the loss function to work properly. 319

This might be needed because sometimes labels could be in a different type (like int) 320

which is not compatible with the model predictions (like float). 321

322

Remember, device should be defined outside this function and should represent 323

the computing device (CPU or GPU) where the tensors are to be placed. 324

Debugging Codes 325

When the initial code output from ChatGPT doesn’t align with your requirements, it’s a 326

prudent step to iterate with more specific prompts. This iterative process is essential for 327

refining the code to match your precise needs. Here’s how you might proceed: 328

1. Identify Specific Issues: Start by pinpointing the specific areas where the code falls 329

short. Is it a matter of functionality, efficiency, or compatibility with your existing 330

systems? 331

2. Craft Targeted Prompts: Once you’ve identified the issues, formulate targeted prompts 332

that directly address these points. For example, if the code is not functioning as ex- 333

pected, you might ask, “How can I modify this function to achieve [desired outcome]?” 334

3. Provide Context: Give ChatGPT as much context as possible. This could include the 335

desired end result, constraints you’re working within, or even the steps you want the 336

code to follow. 337

4. Ask for Explanations: If you don’t understand the code, ask for comments or docu- 338

mentation that explain what each part does. For instance: “Can you add comments 339

to the code explaining each function and parameter?” 340

5. Iterate as Needed: Sometimes, it might take several rounds of back-and-forth to get 341

the code right. Don’t hesitate to keep asking for adjustments until the code meets your 342

specifications. 343

6. Test the Code: After receiving the updated code, test it in your environment. If there 344

are still issues, provide feedback on the results and ask for further revisions. 345

Here’s an example of a refined prompt for further code development: 346

Prompt 1: Revise the above code using transformer library from huggingface 347
and make sure you use trainer function instead of pytorch code. 348

Prompt 2: Revise the above code you generated and make it parallel when 349
inferring new image dataset. Also update the image transform using 350

swin transformer preprocessor. 351

7

from transformers import SwinForImageClassification, SwinProcessor, Trainer, TrainingArguments 352
from datasets import load_metric 353
from torch.utils.data import DataLoader 354
from PIL import Image 355
import pandas as pd 356
import torch 357
import os 358
from concurrent.futures import ThreadPoolExecutor 359

360
Custom dataset class 361
class ProtestDataset(torch.utils.data.Dataset): 362

def __init__(self, img_dir, annotations_file, processor=None): 363
self.img_labels = pd.read_csv(annotations_file, delimiter=’\t’) 364
self.img_dir = img_dir 365
self.processor = processor 366

367
def __len__(self): 368

return len(self.img_labels) 369
370

def __getitem__(self, idx): 371
img_path = os.path.join(self.img_dir, self.img_labels.iloc[idx, 0]) 372
image = Image.open(img_path).convert("RGB") 373
label = self.img_labels.iloc[idx, 1] 374
if self.processor: 375

processed = self.processor(images=image, return_tensors="pt") 376
image = processed.pixel_values.squeeze() # Apply preprocessing 377

return {’pixel_values’: image, ’labels’: torch.tensor(label)} 378
379

Load the processor and model 380
processor = SwinProcessor.from_pretrained(’microsoft/swin-base-patch4-window7-224’) 381
model = SwinForImageClassification.from_pretrained(’microsoft/swin-base-patch4-window7-224’, num_labels=2) 382

383
Prepare datasets 384
train_dataset = ProtestDataset(img_dir=’train’, annotations_file=’train_annot.txt’, processor=processor) 385
eval_dataset = ProtestDataset(img_dir=’test’, annotations_file=’test_annot.txt’, processor=processor) 386

387
Define the training arguments 388
training_args = TrainingArguments(389

output_dir=’./results’, 390
evaluation_strategy="epoch", 391
learning_rate=2e-5, 392
per_device_train_batch_size=8, 393
per_device_eval_batch_size=16, 394
num_train_epochs=3, 395
weight_decay=0.01, 396

) 397
398

Initialize the Trainer 399
trainer = Trainer(400

model=model, 401
args=training_args, 402
train_dataset=train_dataset, 403
eval_dataset=eval_dataset, 404
compute_metrics=load_metric("accuracy"), 405

) 406
407

Train and evaluate 408
trainer.train() 409
trainer.evaluate() 410

411
Save the fine-tuned model 412
trainer.save_model("swin_transformer_finetuned") 413

414
Helper function to check image validity 415
def is_valid_image(file_path): 416

try: 417
Image.open(file_path).verify() 418
return True 419

except Exception: 420
return False 421

422
Helper function to process and predict an image 423
def process_and_predict(image_path, processor, model): 424

if not is_valid_image(image_path): 425
return image_path, None 426

image = Image.open(image_path).convert(’RGB’) 427
inputs = processor(images=image, return_tensors="pt").pixel_values 428
inputs = inputs.to(model.device) 429
with torch.no_grad(): 430

predictions = model(inputs).logits.argmax(-1).cpu().numpy() 431
return image_path, predictions[0] 432

433
Load the trained model for inference 434
model = SwinForImageClassification.from_pretrained("swin_transformer_finetuned").to("cuda") 435

436
Perform parallel inference on images from different countries 437
def run_inference_in_parallel(directory, processor, model): 438

image_paths = [os.path.join(directory, fname) for fname in os.listdir(directory) if is_valid_image(os.path.join(directory, fname))] 439
predictions = {} 440

441
with ThreadPoolExecutor(max_workers=os.cpu_count()) as executor: 442

futures = {executor.submit(process_and_predict, image_path, processor, model): image_path for image_path in image_paths} 443

8

for future in futures: 444
image_path, prediction = future.result() 445
predictions[image_path] = prediction 446

447
return predictions 448

449
Assuming images_by_country is a directory with subdirectories named by countries 450
countries_dir = ’images_by_country’ 451
all_predictions = {} 452

453
for country in os.listdir(countries_dir): 454

country_dir = os.path.join(countries_dir, country) 455
if not os.path.isdir(country_dir): 456

continue 457
predictions = run_inference_in_parallel(country_dir, processor, model) 458
all_predictions[country] = predictions 459

460
Print or otherwise utilize all_predictions as needed 461
for country, predictions in all_predictions.items(): 462

print(f"Predictions for {country}: {predictions}") 463
464
465

I ran the above codes using a workstation with two RTX 3090 GPUs and 128 core CPUs. 466

It returns the following error. 467

Code bug: 468

ImportError: cannot import name ’SwinProcessor’ from ’transformers’ 469

I use the following prompt to ask ChatGPT to fix the code for me. 470

Prompt: After ran your code, I got the following error: 471

ImportError: cannot import name ’SwinProcessor’ from ’transformers’. 472

Fix it. 473

474

ChatGPT: I apologize for the confusion earlier. 475

As of my last update, the transformers library does not include a SwinProcessor. 476

Instead, you would use a feature extractor designed for image models. 477

Let’s correct the code by using SwinForImageClassification with 478

an appropriate feature extractor. 479

... 480

Load the feature extractor 481

feature_extractor = AutoFeatureExtractor.from_pretrained(’microsoft/swin-base-patch4-window7-224’) 482

... 483

After a meticulous process of iterative debugging, the refined Swin Transformer model 484

impressively attained an accuracy rate of 94%. Similarly, I built a ResNet50 model which 485

also demonstrated robust performance, achieving an 85% accuracy rate. The polished codes 486

that underpinned the training and inference of these images are comprehensively detailed in 487

the Appendix. 488

Generative AI can help social scientists process multi- 489

modal data instead of fine-tuning large language and 490

vision models. 491

The preceding illustration underscores the potential of generative AI tools in streamlining 492

the coding process, particularly in fine-tuning sophisticated pre-trained vision models for 493

image classification. Although I maintain that coding has ceased to be a formidable obstacle 494

for engaging in computational research, it is still imperative for social scientists to possess a 495

foundational grasp of these innovative tools. 496

9

Beyond code facilitation, generative AI also boasts the capability to directly analyze 497

multimodal data, encompassing text, imagery, and audio. To exemplify this, I turn to 498

the enhanced GPT-4 model with vision. Consider the image of the Women’s March in 499

Washington, sourced from NPR, which captures marchers united in their call for women’s 500

rights. By uploading this image to GPT-4 and crafting targeted prompts, I was able to 501

efficiently extract pertinent information. This instance not only demonstrates the prowess of 502

generative AI in processing diverse datasets but also its utility as a powerful tool for social 503

scientists to distill insights without deep technical expertise. 504

Prompt 1: Describe the image using concise sentences. 505
Then tell me if it is protest-related and show me your reasoning. 506

507
ChatGPT: The image shows a group of people actively participating in a march. 508
They are holding a large banner that reads "END WOMEN’S WAGE DISC." 509
and "2019 WOMEN’S MARCH ON WASHINGTON", indicating the event is the 2019 510
Women’s March in Washington D.C. The participants are carrying signs with 511
various slogans and a few are wearing pink hats, which are symbols associated 512
with the Women’s March movement. One person in the foreground is using a megaphone, 513
suggesting speeches or chants are part of this event. 514

515
This is definitely protest-related, as the Women’s March is a well-known 516
event advocating for women’s rights and gender equality. The presence of signs, 517
a large banner with a clear message regarding women’s wage disparity, 518
and the collective action of marching are consistent with protest activities. 519

520
521

Prompt 1: Summarize the image and tell me the sentiment, content, and crowd size. 522
523

ChatGPT: The image captures a moment from the 2019 Women’s March in Washington D.C., 524
with participants holding a banner advocating against women’s wage discrimination. 525
The sentiment appears to be one of solidarity and activism, aimed at promoting gender 526
equality and social justice. The signs and symbols, including pink hats and raised fists, 527
communicate a demand for change and unity among the marchers. 528

529
Content-wise, the photo includes a diversity of participants of various ages and ethnicities, 530
and some of the visible signs carry messages of empowerment and resistance. 531

532
The crowd size in the immediate vicinity of the banner is substantial, with dozens of people 533
visible. However, the photograph does not show the entire scope of the march, so the total 534
number of participants is likely much larger, potentially in the thousands, 535
which is typical for such events. 536

For scholars aiming to process a multitude of images, the integration of OpenAI’s GPT-4 537

with its vision API emerges as a formidable tool. While access to this service is contingent 538

upon a subscription, the investment unlocks GPT-4’s sophisticated data analytics capabili- 539

ties. Social scientists can harness these features for elementary data analysis tasks, thereby 540

enhancing their research productivity significantly. 541

Take, for instance, my utilization of GPT-4 to dissect the Dynamics of Collective Action 542

dataset, culminating in a detailed map that delineates the geographical disparities in protest 543

occurrences throughout the United States. For an in-depth understanding of the DoCA 544

dataset, visit this link. Upon uploading a segment of this dataset to GPT-4 and prompting 545

it appropriately, I could extract intricate data visualizations. Notably, within the realm of 546

data governance, users have the autonomy to restrict GPT-4 from employing their data in 547

model training, ensuring control and confidentiality. 548

Prompt: Describe the CSV file and summarize the data pattern. 549
550

ChatGPT: 551
I’ll first need to load and examine the contents of the CSV file 552
to provide you with a description and summarize the data pattern. Let me do that for you. 553

554
import pandas as pd 555

556
Load the CSV file into a DataFrame 557
file_path = ’/mnt/data/data.csv’ 558
data_df = pd.read_csv(file_path) 559

560
Display the first few rows of the DataFrame to understand its structure 561
data_df.head() 562

10

https://media.npr.org/assets/img/2019/01/19/20190119_womensmarch_turner01-31_custom-4a75f7c7e342391fca19d4725e7a6b30be779cff-s2600-c85.webp

563
The CSV file contains a dataset with the following columns: 564

565
rptyy: Appears to represent a year, with floating-point 566
numbers (likely intended to be integers). 567
eventid: An identifier for an event, also numeric. 568
state1: A text field containing abbreviations of US states. 569
city1: A text field containing city names. 570
The data pattern suggests that this file is a record of events, 571
with each row representing a specific event identified by eventid, 572
occurring in a particular city1 and state1 during a given rptyy (year). 573

574
To summarize the data pattern further, I can provide statistics like 575
the number of unique years, event counts, and the frequency of events 576
by state and city. Would you like me to do that? 577

578
Prompt: Yes. Please provide the frequency of events by state. 579

580
ChatGPT: 581

582
The frequency of events by state is as follows: 583

584
New York (NY): 8,613 events 585
Washington D.C. (DC): 1,902 events 586
California (CA): 1,398 events 587
New Jersey (NJ): 1,371 events 588
Massachusetts (MA): 881 events 589
Illinois (IL): 772 events 590

591
Prompt: Write R code using GGPLOT2 to visualize the geographic distribution 592
of protest events across states in the US. 593

594
ChatGPT: 595

596
Certainly! Below is an example of R code using ggplot2 to visualize 597
the geographic distribution of protest events across states in the U.S. 598
The code assumes you have a data frame named data with a column state1 599
for state abbreviations and that each row represents an event. This 600
code will not run in this environment, but you can run it in your local R environment. 601

602
library(ggplot2) 603
library(maps) 604
library(dplyr) 605

606
Ensure the data is in the correct format (factor) for the state abbreviations 607
data$state1 <- as.factor(data$state1) 608

609
Count the number of events by state 610
state_event_counts <- data %>% 611

group_by(state1) %>% 612
summarise(count = n()) 613

614
Merge the counts with the map data 615
us_states_map <- map_data("state") 616
state_event_map <- merge(us_states_map, state_event_counts, by.x = "region", by.y = "state1", all.x = TRUE) 617
state_event_map <- state_event_map[order(state_event_map$order),] 618

619
Replace NA with 0 for states with no events 620
state_event_map$count[is.na(state_event_map$count)] <- 0 621

622
Plot the map 623
ggplot(state_event_map, aes(x = long, y = lat, group = group, fill = count)) + 624

geom_polygon(color = "white") + 625
expand_limits(x = us_states_map$long, y = us_states_map$lat) + 626
scale_fill_continuous(low = "white", high = "red", name = "Event Count") + 627
labs(title = "Geographic Distribution of Protest Events Across US States") + 628
theme_minimal() + 629
theme(legend.position = "right", 630

panel.border = element_blank(), 631
panel.grid.major = element_blank(), 632
panel.grid.minor = element_blank(), 633
axis.text = element_blank(), 634
axis.title = element_blank(), 635
axis.ticks = element_blank()) 636

637
This code performs the following tasks: 638

639
1. Loads the required libraries (ggplot2, maps, and dplyr). 640
2, Converts the state abbreviations to a factor, which is necessary for mapping. 641
3, Counts the number of events per state using dplyr’s group_by and summarise functions. 642
4. Merges the event counts with the map data of US states. 643
5. Handles states with no events by setting their counts to 0. 644
6. Uses ggplot2 to create a choropleth map, filling the states based on 645

the number of events. The geom_polygon function is used to create the map, 646
and the fill aesthetic is based on the event count. 647

7. Adjusts the color scale from white (for no events) to red (for many events). 648
8. Adds a title and adjusts the theme for better visualization. 649

650

11

The Implications to AI for Social Sciences 651

In this commentary, I have endeavored to illustrate how the advent of generative AI has 652

democratized computational methodologies, enabling social scientists, even those with min- 653

imal coding proficiency, to harness the power of cutting-edge computational tools. The crux 654

of this technological leap is that coding, once a formidable barrier to entry in the digital 655

humanities and computational social science, is being redefined as a facilitator rather than 656

a gatekeeper. 657

Generative AI is a game-changer for the social sciences, as posited by (Bail, n.d.) and 658

(Davidson, 2023). Its primary benefit lies in alleviating the coding burden, thereby unlocking 659

higher productivity and efficiency among researchers. This liberation from the intricacies 660

of code generation allows social scientists to invest more deeply in the conceptualization 661

of their research, potentially fostering the advancement of social theories. Moreover, the 662

transformative influence of generative AI has reshaped the research paradigm, making com- 663

putational tools accessible to a broader spectrum of scholars, thereby catalyzing discoveries 664

in social science. Significantly, these tools have also proven to be exceptional assets in ped- 665

agogy, offering substantial capabilities to annotate and clarify coding concepts for students 666

in computational social science disciplines. 667

However, this progress is not without its caveats and conditions. Despite the argument 668

that coding should not pose a substantial hurdle, scholars must still possess fundamental 669

skills to assess both code and the quality of its outputs. For example, when generating 670

code for models like the Swin Transformer, a foundational understanding of deep learning 671

principles is essential. Thankfully, a basic course in computational social science is typically 672

sufficient to surmount this learning curve. A more pressing concern is the evaluation of 673

outputs, particularly when employing models such as GPT-4 for vision and advanced data 674

analysis tasks. For those dealing with extensive image datasets, establishing protocols to 675

systematically verify the accuracy of the results is imperative and an area ripe for scholarly 676

inquiry. 677

While some of the tools referenced here are proprietary, budgetary constraints need not 678

stifle scholarly ambition. Researchers with a modicum of coding knowledge can turn to open- 679

source alternatives like LLaMa2, which do require some computing resources to execute code 680

locally. For those without access to significant computational power, free resources such as 681

Google Colab present a viable solution, thereby continuing to lower the barriers and broaden 682

the horizons for research in the social sciences. 683

Acknowledgments 684

I acknowledge the support from the Institute for Advanced Computational Science for access 685

to high performance computing systems and OpenAI APIs and ChatGPT. This version of 686

draft v2 is also revised and refined by ChatGPT. 687

12

Appendix 688

With several rounds of iterations, I managed to get the following useful codes to fine-tune 689

swin transformer model and use it to infer new dataset. These scripts were split into two. 690

691
from urllib.request import urlopen 692
import ssl 693

694
ssl._create_default_https_context = ssl._create_unverified_context 695

696
697

import os 698
import pandas as pd 699
import torch 700
from torch.utils.data import Dataset, DataLoader 701
from torchvision.io import read_image 702
from transformers import Swinv2ForImageClassification, Swinv2Config, AutoImageProcessor, Trainer, TrainingArguments 703
from transformers import DataCollatorWithPadding 704
from torch.utils.data.dataloader import default_collate 705
import numpy as np # Make sure numpy is imported 706

707
Custom dataset class remains unchanged 708
class CustomImageDataset(Dataset): 709

def __init__(self, annotations_file, img_dir, transform=None, target_transform=None): 710
self.img_labels = pd.read_csv(annotations_file, sep="\t")[[’fname’, ’protest’]] 711
self.img_dir = img_dir 712
self.transform = transform 713
self.target_transform = target_transform 714

715
def __len__(self): 716

return len(self.img_labels) 717
718

def __getitem__(self, idx): 719
img_path = os.path.join(self.img_dir, self.img_labels.iloc[idx, 0]) 720
image = read_image(img_path).float() # Convert to float for ensuring float32 precision 721

722
Ensure image is in CHW format expected by PyTorch models 723
if image.ndim != 3: 724

raise ValueError(f"Image at {img_path} does not have three dimensions. Found {image.ndim} dimensions.") 725
726

label = int(self.img_labels.iloc[idx, 1]) 727
728

Apply the image processor. It handles necessary image transformations 729
processed_images = self.transform(image, return_tensors="pt") 730

731
SwinV2 model expects keys ’pixel_values’ for images. Also, we don’t need to unsqueeze here as ’return_tensors’ takes care of it 732
return { 733

’pixel_values’: processed_images[’pixel_values’].squeeze(0), # remove the added batch dimension 734
’labels’: torch.tensor(label) # Ensure label is a tensor 735

} 736
737
738

def custom_data_collator(features): 739
’features’ is a list of dicts with the outputs of your dataset’s __getitem__ method 740
You need to aggregate the different elements of these dicts here, for instance by creating a new dict with aggregated tensors 741

742
batch = {} 743

744
Aggregate the ’pixel_values’ and ’labels’ from each feature in the batch 745
batch[’pixel_values’] = torch.stack([f[’pixel_values’] for f in features]) 746
batch[’labels’] = torch.tensor([f[’labels’] for f in features]) 747

748
return batch 749

750
751
752

Load the Swin Transformer V2 model from HuggingFace 753
model_name = "microsoft/swinv2-base-patch4-window8-256" 754
config = Swinv2Config.from_pretrained(model_name) 755
config.num_labels = 2 # Set the number of output classes 756

757
model = Swinv2ForImageClassification.from_pretrained(model_name, config=config,ignore_mismatched_sizes=True) 758

759
Initialize the AutoImageProcessor 760
processor = AutoImageProcessor.from_pretrained(model_name) 761

762
Create dataset instances 763
train_dataset = CustomImageDataset(annotations_file=’./annot_train.txt’, img_dir=’./img/train’, transform=processor) 764
test_dataset = CustomImageDataset(annotations_file=’./annot_test.txt’, img_dir=’./img/test’, transform=processor) 765

766
767

Define the training arguments 768
training_args = TrainingArguments(769

output_dir=’./results’, # Output directory for model predictions and checkpoints 770
num_train_epochs=3, # Number of training epochs 771
per_device_train_batch_size=128, # Batch size for training 772
per_device_eval_batch_size=128, # Batch size for evaluation 773

13

warmup_steps=500, # Number of warmup steps for learning rate scheduler 774
weight_decay=0.01, # Strength of weight decay 775
logging_dir=’./logs’, # Directory for storing logs 776
logging_steps=10, # Log saving interval 777
evaluation_strategy="epoch", # Evaluate at the end of each epoch 778
save_strategy="epoch", # Save the model at the end of each epoch 779
load_best_model_at_end=True, # Load the best model when finished training (based on evaluation) 780

) 781
782

Define a simple function to compute metrics (e.g., accuracy) 783
784

def compute_metrics(eval_pred): 785
logits, labels = eval_pred 786
Convert logits to a tensor if it’s a numpy array 787
if isinstance(logits, np.ndarray): 788

logits = torch.tensor(logits) 789
790

Similarly, ensure labels are a tensor; this is not in your error but might cause issues later 791
if isinstance(labels, np.ndarray): 792

labels = torch.tensor(labels) 793
794

predictions = torch.argmax(logits, dim=-1) # Using ’dim’ as the argument key for clarity 795
accuracy = (predictions == labels).float().mean() 796
return {’accuracy’: accuracy.item()} 797

798
799

Initialize the Trainer with the custom data collator 800
801

trainer = Trainer(802
model=model, 803
args=training_args, 804
train_dataset=train_dataset, 805
eval_dataset=test_dataset, 806
compute_metrics=compute_metrics, 807
data_collator=custom_data_collator, # Use your custom data collator 808

) 809
810
811

Start training 812
trainer.train() 813

814
Evaluate the model 815
results = trainer.evaluate() 816

817
Save the model 818
trainer.save_model("./swin_v2_b_model_protest") 819

820
You can also get the model’s predictions on the test dataset using the following code: 821
predictions = trainer.predict(test_dataset) 822

import os 823
import pandas as pd 824
import torch 825
from torchvision.transforms import functional as F 826
from transformers import Swinv2ForImageClassification, AutoImageProcessor 827
from concurrent.futures import ThreadPoolExecutor 828
from PIL import Image 829
from tqdm import tqdm 830

831
Load the fine-tuned model and processor 832
model_dir = "./swin_v2_b_model_protest" 833
model_name = "microsoft/swinv2-base-patch4-window8-256" 834
model = Swinv2ForImageClassification.from_pretrained(model_dir) 835
processor = AutoImageProcessor.from_pretrained(model_name) 836

837
Define a function to predict the class of a single image 838
def predict_image(image_info): 839

country_folder, image_file = image_info 840
image_path = os.path.join(image_folder, country_folder, image_file) 841
try: 842

Attempt to open the file as an image 843
image = Image.open(image_path) 844

845
Ensure image is in RGB format 846
if image.mode != ’RGB’: 847

image = image.convert(’RGB’) 848
849

Convert PIL image to PyTorch tensor 850
image = F.to_tensor(image).float() 851
inputs = processor(image, return_tensors="pt", do_rescale=False) 852
outputs = model(**inputs) 853
prediction = torch.argmax(outputs.logits, dim=-1) 854
return {"Country": country_folder, "Image": image_file, "Prediction": prediction.item()} 855

except Exception as e: 856
print(f"Error processing file {image_path}: {str(e)}") 857

return None 858
859

Iterate through the files in the "images_by_country" folder and make predictions 860
image_folder = "images_by_country" 861
image_infos = [] 862

863

14

for country_folder in os.listdir(image_folder): 864
country_path = os.path.join(image_folder, country_folder) 865
if os.path.isdir(country_path): 866

for image_file in os.listdir(country_path): 867
image_infos.append((country_folder, image_file)) 868

869
Use ThreadPoolExecutor to parallelize the image prediction 870
with ThreadPoolExecutor() as executor: 871

predictions = list(tqdm(executor.map(predict_image, image_infos), total=len(image_infos), desc="Predicting")) 872
873

Remove None entries (if any) 874
predictions = [pred for pred in predictions if pred is not None] 875

876
Save the predictions to a CSV file 877
predictions_df = pd.DataFrame(predictions) 878
predictions_df.to_csv("predictions_by_country.csv", index=False) 879

880

References

Bail, C. A. (n.d.). Can generative ai improve social science?
Davidson, T. (2023). Start generating: Harnessing generative artificial intelligence for

sociological research.
Won, D., Steinert-Threlkeld, Z. C., & Joo, J. (2017). Protest activity detection and per-

ceived violence estimation from social media images. In Proceedings of the 25th acm
international conference on multimedia (pp. 786–794).

Zhang, H., & Pan, J. (2019). Casm: A deep-learning approach for identifying collective
action events with text and image data from social media. Sociological Methodology ,
49 (1), 1–57.

Zhang, Y., Lin, H., Wang, Y., & Fan, X. (2023). Sinophobia was popular in chinese language
communities on twitter during the early covid-19 pandemic. Humanities and Social
Sciences Communications , 10 (1), 1–12.

15

	References

